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Energy-Conserving Numerical Approximations for Vlasov Plasmas* 

The problem of obtaining useful numerical descriptions of the behavior of 
high-temperature plasmas is currently of intense interest, especially in the field 
of controlled thermonuclear fusion research.l For sufficiently high temperatures 
it is appropriate to use the Vlasov approximation, in which the particles can be 
represented by time-dependent distribution functions, one for each particle species. 
These distribution functions are functions of position and velocity in a single- 
particle phase space, and they satisfy collisionless Boltzmann equations in which 
the electromagnetic field due to the particles is approximated by the so-called 
self-consistent field. A completely equivalent way to represent the particle motion 
is to specify the trajectories of the points in the single-particle phase space for 
each species. The trajectories, which are the characteristic curves of the Boltzmann 
equations, are the solutions of the single-particle equations of motion that are 
satisfied for each particle when the electromagnetic field due to the particles is 
replaced by the “self-consistent” field. This latter method of describing the particle 
motion, that of specifying particle trajectories instead of distribution functions, 
is being used with increasing favor. 

The purpose of this note is to present a unified and general method for deriving 
numerical approximation schemes within the framework of the trajectory approach. 
The method is based on the exact Lagrangian that was given independently by 
Low2 and Sturrock.2 A unique system of ordinary differential equations is implied 
by the Lagrangian formulation for any form of approximate representation of the 
potentials and particle trajectories in terms of time-dependent parameters. 
A general energy theorem is valid for these systems of ordinary differential 
equations. For energy-conserving physical situations, situations for which there 
are no time-dependent external sources, the energy theorem guarantees that 
classes of energy-conserving approximations can be constructed. This is an 
important consequence of the Lagrangian formulation. Some simple special cases 
of the Lagrangian formulation are closely related to other work in this field, 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
1 For a recent survey of activity in this area, see Los Alamos Scientific Laboratory Report 

LA-3990: “Proceedings of the APS Topical Conference on Numerical Simulation of Plasma, 
September 18-20, 1968.” 

a F. E. Low, Proc. Roy. Sot. (London) A248, 282 (1958); P. A. Sturrock, Ann. Phys. (New 
York) 4, 306 (1958). 
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for example, to numerical simulation of Vlasov plasmas by a finite number of 
particles with the particle-in-cell (PIC) method or the cloud-in-cell (CIC) method. 
The burden of this paper is to explain how Hamilton’s variational principle 
can be used to replace the integro-partial differential equations that describe 
Vlasov plasmas by an approximating system of ordinary differential equations 
in time. We do not propose difference schemes for solving these ordinary differential 
equations numerically. 

We begin by describing the physical problem and outlining the application 
of Hamilton’s principle to the derivation of approximation schemes.3 Then the 
energy theorem is discussed. Finally, an example appropriate to numerical 
simulation by a finite number of particles is presented. 

We consider a plasma consisting of N species of particles and denote the mass 
and charge of particles of species i by Mi and Qi , respectively. The initial distribu- 
tion function for particles of species i in the phase space of position r and velocity v 
is denoted byfi(r, v, 0). The particles move in the “self-consistent” electromagnetic 
field and, possibly, in generalized nonelectromagnetic potentials that we denote by 
Ui(r, v, t) for species i. We also allow the possibility of external (prescribed) 
charge and current densities po(r, t) and j,(r, t). The Lagrangian for this system2s3 
is expressed in terms of the electromagnetic scalar and vector potentials qb(r, t) 
and A(r, t), and in terms of functions Ri(r’, v’, t) that describe the particle trajec- 
tories as functions of time and the initial conditions. The vectors r = Ri(r’, v’, t) 
and v = &(r’, v’, t), where the dot denotes differentiation with respect to t, are 
the position and velocity vectors, respectively, of that particle of species i whose 
initial position and velocity vectors were r’ and v’. For simplicity of notation, 
the arguments of Ri(r’, v’, t) will be omitted in the following formulas. The 
Lagrangian is4 

L = 5 f d3r’ d%‘f,(r’, v’, 0) 16 Mkkk2 - U,(R, , &, t) - QK+(Rk , t) 
k=l 

+ ‘, Q&k - A(& , t)l + I, d3r I& [E2(r, t) - B2(r, t)] 

- fdr, t> $(r, t> + k jdr, 1) - A@, 91, 

SDetails will appear in a chapter of a forthcoming book: B. Alder, S. Fernbach, and M. 
Rotenberg, eds., “Methods in Computational Physics,” Academic Press, New York, Vol. 9. 
Some details can be found in H. Ralph Lewis, Los Alamos Scientific Laboratory Report LA-3803 
(1967). 

4 The Lagrangian formulation for the electromagnetic field can be extended to include any 
of a certain class of material media that exhibit nonlinear polarizability and magnetizability. 
(See Footnote 3.) This extension is not included here, although there may be useful applications 
to the numerical study of nonlinear optical phenomena. 
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where E and B are to be expressed in terms of 4 and A by 

E= -+A and B=VxA, (2) 

and where appropriate boundary conditions have been specified on the boundary 
of the volume V. The equations of motion for the particles and the Maxwell 
equations for the fields can be obtained with this Lagrangian via Hamilton’s 
variational principle in which the functions to be varied independently are 4, A, 
and the Rk : 

6 s”” L dt = 0. 
t2 

The initial and boundary conditions on the variations are discussed in the reference 
given in Footnote 3. 

The first step in using the variational principle to obtain a system of ordinary 
differential equations whose solutions will provide approximations to 4, A, and 
the Rk is to choose a specific type of approximation of those functions in terms 
of time-dependent parameters whose time dependence is to be found. That is, 
we choose functions @, aC, and WB whose dependence on their arguments is 
specified, and demand that 4, A, and R, be approximated as 

$(r, t) s m t, {%(f)>l, A@, 0 z W, 4 @mW)l, 
and 

W’, v’, t) s %W, v’, t, {n&N, (4) 

where the sets of functions a,(t), pm(t), and ykz(t) are to be determined. Equations 
for these functions shall be obtained through use of the variational principle. 
The functions @, ad and WK , and the initial conditions on the a,(t), /L(t), and ykz(t), 
must be chosen to satisfy the boundary and initial conditions on the potentials 
and trajectories. The simplest example is to choose @, a, and the WI, without 
explicit time dependence as linear combinations of a finite number of linearly 
independent basis functions with time-dependent coefficients: 

@by 4 bdt)H = Z 40 @A% Wr, t, @mW>l = 2 &WU~)~ 
n-1 TM=1 

Wkb’, v’, 4 hW1 = z m(f) %dr’, 0 (5) 
Z-l 

If the basis functions Gn , &,, , and BksI were infinite in number and formed 
complete sets of functions, then no approximation would be involved. The 
approximation enters by not choosing complete sets of functions. 
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Having decided on some speciGc functions @, 01, and Wk , we substitute Eqs. (4) 
into Eq. (1) to obtain a new Lagrangian which we also denote by L. The new 
Lagrangian is a function of generalized coordinates OL, , pm, and ykl, and general- 
ized velocities flm and jkl . We demand exact satisfaction of Hamilton’s principle, 
Eq. (3), for arbitrary variations of the OL, , pm , and ykz . This is the same as 
demanding exact satisfaction for arbitrary variations of $, A, and the Rk within 
the restricted class of functions defined by Eqs. (4). The system of ordinary 
differential equations for the time-dependent parameters are the Euler-Lagrange 
equations associated with the new Lagrangian: 

d a~ aL o d aL aL 
----=, -- --= o aL o 
dt a?kl aYkZ dt a& a& ' Zn= . (6) 

The energy theorem can be demonstrated by going to a Hamiltonian formulation. 
We define generalized momenta a,,, and Tkl by 

aL aL CJ -- 
m- a& 

and rk=-. 
a?kZ 

In terms of them we define a Hamiltonian function H by 

where His to be considered a function of the (Y, , t$,, , Ykl , usn , Tkz , and, possibly, t. 
By using Eqs. (6), (7), and (8), it is easy to verify the following equations: 

. aH . aH 
YkZ = ----2 

arkZ 

731 = - - 

aYkZ ’ 

These equations imply 
dH aH -=-. 
dt at (10) 

Equation (10) is a statement of the energy theorem. It applies for arbitrary choice 
of the functions @, a, and &?I, in Eqs. (4). An important special case is that in 
which none of the functions @, a, and 91)1, have explicit time dependence. If, in 
addition, p0 , j, , and uk are not explicitly time-dependent, so that the physical 
system is energy-conserving, then Eq. (10) reduces to 

dH 
- = 0, 
dt 

which shows that the approximation scheme, like the physical system, is energy- 
conserving. 

This formalism is being applied to a numerical investigation of the cold two- 
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stream instability with a continuum of particles,5 and there are many other 
possible applications. As an illustration, we consider here the numerical simulation 
of plasmas by a finite number of particles. In that case, Eqs. (6) or (9) yield the 
equations of motion for each particle and a definite approximation scheme for the 
electromagnetic potentials. To be specific, we specialize to the simple case of one 
spatial dimension, X, with periodic boundary conditions at x = 0 and x = X, 
and we consider a single species of particles in the presence of a fixed, uniform 
background charge density p,, . Because there is only one dimension, we can set 
the vector potential identically equal to zero. The initial distribution function is a 
sum of &functions, 

f(x, 21, 0) = c 6(x - XJ 6(v - Vi), (12) 

where xi and vi are the initial position and velocity of the i-th particle, respectively. 
There is only one function RI, . We denote its x component by x(x’, v’, t), and 
choose representations of x and (b in the form of Eqs. (5): 

+tx, 0 = ; %(f> @nW, x(x’, v’, t) = ; yz(t) X,(x’, v’). (13) 
?l=l 14 

The G,,(x) must satisfy the boundary conditions at x = 0 and x = X. Because 
of the singular initial distribution function, a convenient set of X, are 

X,(x’, v’) = 1;: 
if x’ = xI, v‘ = v1 
otherwise, (14) 

in which case the initial conditions on the n(t) are 

rm = x2 7 m = vz * 

Clearly, n(t) is the position of the I-th particle at time t. 
The Euler-Lagrange equations for yI and LY, are 

Wz = -Q c 44 @i’MOl, 

(15) 

(164 

and 
i 

dx @ii’(x) @n’W = po 1: dx @n(x) + Q ; @nMOl, Wb) 
2-1 

where @i(x) z (d/dx) Qi(x). Equation (16a) is the equation of motion for the 
Eth particle, and Eq. (16b) is a definite approximation scheme for solving Poisson’s 
equation. The equations are energy-conserving. 

5 H. Ralph Lewis and K. J. Melendez, paper Bl of the reference in Footnote 1. 
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Simple special cases of Eqs. (16), and of their analogues in two and three 
dimensions, are related to procedures that have been used in numerical simulation 
work.6 Our Lagrangian approach provides energy-conserving versions of those 
procedures, as well as a wide variety of energy-conserving generalizations. As an 
example that provides an energy-conserving version of the one-dimensional 
particle-in-cell (PIC) method, let us take a piecewise linear approximation for the 
scalar potential. It is then convenient to choose the Q,(x) to be the following local 
basis for periodic, piecewise-linear functions: 

if (iz - 1)d < x < nd 

if nd < x < (n + l&l (17) 

where d = X/(N, + 1). With this set of basis functions, a,(t) is the value of 
the potential at x = nd. The integrals occurring in Eq. (16b) are: 

s 

A 
dx Q&(x) = d, (184 ” 

I 
,a dx @i’(x) Q,‘(x) = 
0 

if i=n 

if Ii--n/=1 

otherwise 

(18’4 

The matrix defined by Eq. (18b) represents the usual central difference approxi- 
mation for the second derivative. As a consequence of these formulas, Eq. (16b) is 
identical to the “area-weighting” approximation for Poisson’s equation.6.7 

Further examples will be presented in a later publication.3 
In conclusion, we express the expectation that the Lagrangian approach to 

deriving numerical approximation schemes for Vlasov plasmas will be of practical 
advantage in solving complicated problems. 

RECEIVED: November 10, 1969 
H. RALPH LEWIS 

University of California 
Los Alamos Scientific Laboratory, 
Los Alamos, New Mexico 87544 

* See, for example, the reference in Footnote 1. In particular, paper A4 by R. L. Morse and 
C. W. Nielson, and paper Dl by C. K. Birdsall and D. Fuss. 

’ We acknowledge helpful discussions with C. W. Nielson on this point. 


